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,,-.. Although tracking itself is by and
large solved problem...“,

-- Jianbo Shi & Carlo Tomasi
CVPR1994 --




Outline of the Lecture = X

1. Visual tracking: not one, but many problems.

. The KLT tracker

. The Mean-Shift tracker
Discriminative Correlation Filters
. Tracking by detection

. The TLD tracker -
a robust long-term tracker example

o U1 AN W N

/. How to evaluate a tracker?
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Application domains of Visual Tracking

* monitoring, assistance, surveillance,
control, defense

 robotics, autonomous car driving,
rescue

* measurements: medicine, sport,
biology, meteorology

* human computer interaction
« augmented reality

 film production and postproduction:
motion capture, editing

* management of video content:
indexing, search

 action and activity recognition
» image stabilization

» mobile applications
» camera “tracking”
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Applications, applications, applications, ...
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Tracking Applications ....

— Team sports: game analysis, player statistics, video annotation,




Sport examples ®

DARTFISH &7

http://cvlab.epfl.ch/~lepetit/
http://www.dartfish.com/en/media-gallery/videos/index.htm

Slide Credit: Patrick Perez 8/150


http://cvlab.epfl.ch/~lepetit/

Model-based Tracking: People and Faces &

http://cvlab.epfl.ch/research/completed/realtime tracking/ http://www.cs.brown.edu/~black/3Dtracking.html

Slide Credit: Patrick Perez 9/150


http://cvlab.epfl.ch/research/completed/realtime_tracking/
http://www.cs.brown.edu/~black/3Dtracking.html

Is it clear, what tracking is?

video credit:
Helmut
Grabner
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Tracking: Formulation - Literature

Computer
Image ok
B Processing, Vision

" Analysis,
and
Machine
Vision

Computer Vision

Alparichins and Applications

Surprisingly little is said about tracking in standard textbooks.
Limited to optic flow, plus some basic trackers, e.g. Lucas-Kanade.

Definition (0):
[Forsyth and Ponce, Computer Vision: A modern approach, 2003]

Computer
Vision

A MODERN APPROACH

“Tracking is the problem of generating an inference about the
motion of an object given a sequence of images.
Good solutions of this problem have a variety of applications...”
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§

-

Formulation (1): Tracking

Establishing point-to-point correspondences

in consecutive frames of an image sequence
Notes:
 The concept of an “object” in F&P definition disappeared.

 If an algorithm correctly established such correspondences,
would that be a perfect tracker?

 tracking = motion estimation?
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Tracking is Motion Estimation / Optic Flow ? |®
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Tracking is Motion Estimation / Optic Flow ? |@ [

GPU4&E
VISION
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Tracking is Motion Estimation / Optic Flow? |=®

Motion “pattern” Camera tracking

http://www.cs.cmu.edu/~saada/Projects/CrowdSeg http://www.youtube.com/watch?v=ckVQrwYljAs
mentation/
Dense motion field Sparse motion field estimate
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§

Optic Flow ot

o

Standard formulation:
» At every pixel, 2D displacement is estimated between consecutive frames
Missing:

 occlusion - disocclusion handling: pixels visible in one image only
- in the standard formulation, “don’t know” is not an answer

» considering the 3D nature of the world
 large displacement handling - only recently addressed (EpicFlow 2015)

Practical issues hindering progress in optic flow:

 is the ground truth ever known?
- learning and performance evaluation problematic (synthetic sequences ..)

* requires generic regularization (smoothing)
 failure (assumption validity) not easy to detect

In certain applications, tracking is motion estimation on a part of the image
with specific constraints: augmented reality, sports analysis 16/150



Formulation (1): Tracking &

Establishing point-to-point correspondences

in consecutive frames of an image sequence
Notes:

 The concept of an “object” in F&P definition disappeared.

« If an algorithm correctly established such correspondences,
would that be a perfect tracker?

 tracking = motion estimation?

Consider the Bolt sequence:
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Formulation (17): Tracking L

Establishing point-to-point correspondences
between all pairs of frames in an image sequences

« which leads to the concept of long-term tracking,
to be discussed later

18/150



Definition (2): Tracking ®

Given an initial estimate of its position,
locate X in a sequence of images,

Where X may mean:

» A (rectangular) region

* An “interest point” and its neighbourhood
* An “object”

This definition is adopted e.g. in a recent book by
Maggio and Cavallaro, Video Tracking, 2011

ERTILI BANGGI0 | ARDREA CAMALL ARl

Smeulders T-PAMI13: VIDEO
Tracking is the analysis of video sequences for the TRACKING
purpose of establishing the location of the target s o e

over a sequence of frames (time) starting from
the bounding box given in the first frame.

19/150




Formulation (3): Tracking as Segmentation

J. Fan et al. Closed-Loop Adaptation for Robust Tracking, ECCV 2010
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Tracking as model-based segmentation

21/150



Tracking as segmentation

http://vision.ucsd.edu/~kbranson/research/cv
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http://vision.ucsd.edu/~kbranson/research/cvpr2005.html
http://www2.imm.dtu.dk/~aam/tracking/
sequences-for-presentation/heart-guillaume-us.avi

A “standard” CV tracking method output o
—_— -

Approximate motion estimation, approximate segmentation.

Neither good optic flow, neither precise segmentation required2.3/150



Rotated B-Boxes - Interpretation?
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Rotated B-Boxes - Interpretation?
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§

o

Formulation (4): Tracking o

Given an initial estimate of the pose and state of X :
In all images in a sequence, (in a causal manner)
1. estimate the pose and state of X
2. (optionally) update the model of X

Pose: any geometric parameter (position, scale, ...)

State: appearance, shape/segmentation, visibility, articulations

Model update: essentially a semi-supervised learning problem
— a priori information (appearance, shape, dynamics, ...)

— labeled data (“track this”) + unlabeled data = the sequences
Causal: for estimation at T, use information from timet<T

27/150



Tracking in 6D.

28/150



Tracking-Learning-Detection (TLD) &

THMD confidence
--—---="Thx confidence, previous Tun
| — HW-QTGW“TQ
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i)

A “miracle”: Tracking a Transparent Object |®

070341

video credit:
Helmut
' Grabner

H. Grabner, H. Bischof, On-line boosting and vision, CVPR, 2006.
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Tracking the “Invisible”

H. Grabner, J. Matas, L. Gool, P. Cattin,Tracking the invisible: learning where the object might be, CVPR 2010.
31/150



§

e

Formulation (5): Tracking -

Given an estimate of the pose (and state) of X in “key” images

(and a priori information about X),

In all images in a sequence, (in a causal manner):

1. estimate the pose and state of X

2. (optionally) estimate the state of the scene [ e.g. “supporters”]

3. (optionally) update the model of X

Out: a sequence of poses (and states),(and/or the learned model of X)

Notes:

« Often, not all parameters of pose/state are of interest, and the state is
estimated as a side-effect.

 |If model acquisition is the desired output, the pose/state estimation is a
side-effect.

« The model may include: relational constraints and dynamics, appearance
change as a function as pose and state
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Short-term v. Long-term Tracking v. OF -

§

o

Short-term Trackers:

primary objective: “where is X?” = precise estimation of pose
secondary: be fast; don’t lose track

evaluation methodology: frame number where failure occurred
examples: Lucas Kanade tracker, mean-shift tracker

Long-term Tracker-Detectors:

primary objective: unsupervised learning of a detector, since
every (short-term) tracker fails, sooner or later
(disappearance from the field of view, full occlusion)

avoid the “first failure means lost forever” problem

close to online-learned detector, but assumes and exploits the fact
that a sequence with temporal pose/state dependence is available

evaluation methodology: precision/recall, false positive/negative
rates (i.e. like detectors)

note: the detector part may help even for short-term tracking
problems, provides robustness to fast, unpredictable motions.

Optic Flow, Motion estimation: establish all correspondences a sequence

34/150



Other Tracking Problems:

http://server.cs.ucf.edu/~vision/projects/sali/CrowdTracking/index.html

...... multiple object tracking ....

another example, example2

35/150


sequences-for-presentation/ČESKOSLOVENSKÁ SPARTAKIÁDA 1975  1 - (www.themp3converter.com) 360p.mp4
sequences-for-presentation/spartakiada - (www.themp3converter.com) 360p.mp4

Multi-object Tracking o/




Tracking as detection and identification C

* ant tracking 1

e result 1

N

37/150


sequences-naiser-ants/eight_00m31s.m4v
sequences-naiser-ants/Ferda1080.mp4

Other Tracking Problems:

Cell division. Three rounds of cell division in Drosophila Melanogaster.
http://www.youtube.com/watch?v=rgLJrvoX_qo http://www.youtube.com/watch?v=YFKA647w4Jg

splitting and merging events ....

38/150



The World of Fast Moving Objects = X

e 'MO - obiect that moves over a distance exceeding its
size within exposure time

e Standard datasets (VOT. OTB, ALOV) do not include FMOs
https://arxiv.org/abs/1611.07889

IR NEN RN
50 100 150



https://arxiv.org/abs/1611.07889
https://arxiv.org/abs/1611.07889

FMO Examples =

e Ping pong, tennis, frisbee, volleyball, badminton, squash,
darts, arrows, softball

e Some FMOs are nearly homogeneous, while some have
coloured texture

e SOTA trackers fail...













Estimation of Appearance W

® Reconstruction of FMOs blurred by motion and rotation
e Axis of rotation, angle of rotation, full 3D appearance, ...




Motion Estimation from a Single Image

45/150



§

o

Tracking problem variations: L,

« multiple cameras
« RGBD sensors
« combination of sensors (accelerometer + visual)

46/150



§

o

Tracking problems =

« motion estimation (establishing point-to-point correspondences) v.
segmentation (region-to-region correspondences)

 long-term v. short-term
* one object v. multiple objects

 casual v. non-causal (= offline video analysis)

* single v. multi-camera

e static v. moving camera

47/150



The KLT tracker



i)

Fragment tracking ®

— Problem: tracking “key points” (SIFT, SURF, STAR, RIFF, FAST), or

random image patches, as long as possible
* Input: detected/chosen patches

. . slide credit:
« Qutput: tracklets of various life-spans Patrick Perez

o
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i)

Fragment tracking ®

— Problem: tracking “key points” (SIFT, SURF, STAR, RIFF, FAST), or
random image patches, as long as possible

* Input: detected/chosen patches slide credit:

« Qutput: tracklets of various life-spans Patrick Perez

i t+1

d = arg mdin > I (p 4+ d) — 10 (p)|?

o

50/150



Multi-resolution Lucas-Kanade W

— First assuming small displacement: 1st-order Taylor expansion inside SSD

ide credit:
atrick Perez

=—| > VvI@PVI(P)' > VI(P)(p)
peER(%) pER(x)
For good conditioning, patch must be textured/structured enough:

« Uniform patch: no information
» Contour element: aperture problem (one dimensional information)
« Corners, blobs and texture: best estimate

[Lucas and Kanda 1981][Tomasi and Shi, CVPR’94]
52/150



Multi-resolution Lucas-Kanade =

— Arbitrary displacement

* Multi-resolution approach: Gauss-Newton like approximation down image
pyramid

slide credit:
Patrick Perez

%1€

. ]
P a+D 2 g4 2d®
{I(fit)} {I(f,t+l)}

v=argmin Y [1EHD(p42d D)4 vrEHD (p42dO) Ty 18 (p)|2
peRf(x)

—1
ﬁ:—( z vr<f~ﬂ(p)vf“+t+1’(p>T) > wreHD ) D (p)
peER!(%) PER(X)
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§

e

Monitoring quality -

— Translation is usually sufficient for small fragments, but:
 Perspective transforms and occlusions cause drift and loss

— Two complementary options slide credit:
« Kill tracklets when minimum SSD too large Patrick Perez
« Compare as well with initial patch under affine transform (warp) assumption

d=argmin ¥ It (p+d) — 1V (p)|?
d pE Ry
w=argmin Y [t (w[p]) - 19 (p)|?
pERo

54/150



Characteristics of KLT

cost function: sum of squared intensity differences
between template and window

optimization technique: gradient descent

model learning: no update / last frame / convex
combination

attractive properties:
—fast

—easily extended to image-to-image transformations with
multiple parameters

55/150



The Mean-shift Tracker
(colour-based tracking)



P

Color-based tracking o

— Global description of tracked region: color histogram
— Reference histogram with B bins

slide credit:
Patrick Perez

* *
qa° = (qy)u=1.---B
set at track initialization

— Candidate histogram at current instant

a(x) = (qu(x))y=1..B
gathered 1n region ot current

. R(x)
image.

— At each instant

E__.Il-d.n. AR o _: B ™
%¢41 = arg mindist(q*,q(x)) mI

0
e searched around it 123456788910

* iterative search initialized with it: meanshift-like iteration

57/150



P

Color-based tracking o

— Global description of tracked region: color histogram e credit
slide creaqit:
— Reference histogram with B bins Patrick Perez

* *
qa° = (qy)u=1.---B
set at track initialization

— Candidate histogram at current instant

a(x) = (qu(x))y=1..B
gathered 1n region ot current

. R(x)
image.

— At each instant

%41 = arg mindist(q", a(x))
e searched around N 0123456?39W ﬂ12345e?39m
. iterative search infalized with : meanshift-like iteration
X¢

58/150



P

Color-based tracking o

— Global description of tracked region: color histogram dide credit:
— Reference histogram with B bins 1 " Patrick Perez

* *
qa° = (qy)u=1.---B
set at track initialization

— Candidate histogram at current instant

a(x) = (qu(x))y=1..B
gathered 1n region ot current

. R(x)
image.

— At each instant

%41 = argmindist(",a(x))

e searched around

0
12345678910 ﬂ123456?39m

. iterative search infalized with : meanshift-like iteration

.

Xt
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Color distributions and similarity

— Color histogram weighted by a kernel
» Kernel elliptic support sits on the object
» Central pixels contribute more
* Makes differentiation possible

qu(x) o< > k(|Ips — x||F-1) LII(Ps) € bu]
p;ER(x)

* H: “bandwidth” sym. def. pos. matrix, related to

bounding box dimensions
» k: “profile” of kernel (Gaussian or Epanechnikov)
— Histogram dissimilarity measure
. Battacharyya measure dist(q*, q(x))? = 1-Y" \/giqu(x) = 1—-p[q*, q(x)]
* Symmetric, bounded, null only for equality "
* 1 - dot product on positive quadrant of unitary hyper-sphere

slide credit:
Patrick Perez
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Color distributions and similarity

— Color histogram weighted by a kernel
» Kernel elliptic support sits on the object
» Central pixels contribute more
* Makes differentiation possible

qu(x) o< > k(|Ips — x||F-1) LII(Ps) € bu]

p;€R(x)

* H: “bandwidth” sym. def. pos. matrix, related to

bounding box dimensions
» k: “profile” of kernel (Gaussian or Epanechnikov)

— Histogram dissimilarity measure

. Battacharyya measure dist(q”*,q(x))? = 1— Z Vanqu(x) = 1—p[q™, q(x)]

. Symmetrlc bounded, nuut onty Tor equauty
- dot product on positive quadrant of unitary hyper-sphere

slide credit:
Patrick Perez
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lterative ascent

Ri+1 = argmax y /g, qu(x)
(r

qu(x) o< 3k (|Ipi — x13-1) 1[1(p;) € bu]
P;
— Non quadratic minimization: iterative ascent with linearizations

u; bin index of pixel i: I(p;) € by,

Va0 < HLY q’“z Sk (Ipi = xlF1) Geop)

— Setting move to (g=-h’)

qu;
(9 (P = X113, -1) (pi = %)

S [ty (19 — %12, )

yields a simple algorithm...

2p;

= MeanShift(x)—x

62/150



Meanshift tracker @

§

o

In frame t+1
— Star.t search at y(0) — %y
— Until stop

« Compute candidate histogram q(y(™)
* Weight pixels inside kernel support

Q. : ;
vp; € R(y™), w; g (Ipi =y ™3-1), wi=1
i

* Move kernel
y(n—l—l) — y(“rl)_|_[MeanSh]ft(y(n))_y(ﬂ_.)] — ngef‘z(}f{”)) wW;P;

» Check overshooting (1) Lo (n+1)
untit pla*, p(y )] < pla*, p(y(M)], y( 1) ¥

. If ||y('”-+1) — y('“-)||2 < estop,else n+—n-+1

ax e n—+1 slide credit:
Xt+1 — y( +1) Patrick Perez
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Mean Shift tracking example

Feature space: 16x16x16 quantized RGB
Target: manually selected on 15 frame
Average mean-shift iterations: 4




Mean Shift tracking example

D. Comaniciu, V. Ramesh, P. Meer: Kernel-Based Object Tracking TPAMI, 2003
e



http://comaniciu.net/Papers/KernelTracking.pdf
http://comaniciu.net/Papers/KernelTracking.pdf
http://comaniciu.net/Papers/KernelTracking.pdf
http://comaniciu.net/Papers/KernelTracking.pdf

Pros and cons

§

-

— Low computational cost (easily real-time)
— Surprisingly robust
* Invariant to pose and viewpoint
» Often no need to update reference color model

— Invariance comes at a price
* Position estimate prone to fluctuation
» Scale and orientation not well captured
» Sensitive to color clutter (e.g., teamates in team sports)

— Local search by gradient descent

— Problems:
« abrupt moves
» occlusions

slide credit:
Patrick Perez
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Tracking with Correlation Filters

Acknowledgement to Joao F. Henriques from
Institute of Svstems and Robotics
University of Coimbra
for providing materials for this presentation
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BRY Overview

B Discriminative tracking

B Connection of correlation and the discriminative tracking
M Brief history of correlation filters

B Breakthrough by MOSSE tracker

B Kernelized Correlation Filters

B Discriminative Correlation Filters

Tracking with Correlation Filters 72 slides material by Joao F. Henriques '
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+1 +1 +1 -1 -1 - labels

Classifi _ Classify subwindows
i to find target

_ Tracking with Correlation Filters 73

slides material by Joao F. Henriques '



C
Discriminative Tracking Cm

¥ How to get training samples for the classifier?

W Stondard approach:

e hhoxes with high overlap with the GT — Pos. samples

® bboxes far from the GT — Neg. samples
t=0

m Neg. samples
m Pos. samples
Unspecitied

® What with the samples in the unspecified area?

* Tracking with Correlation Filters 74 slides material by Joao F. Henriques '



Connection to Correlation

B Let’s have a linear classifier with weights w
I = f \

y:WTX l=21 \

® During tracking we want to evaluate
the classifier at subwindows X; :
T
Yi = W X

B Then we can concatenate v: into
a vector y (i.e. response map)

W This is equivalent to cross-correlation formulation which
can be computed efficiently in Fourier domain

y=X®Ww

* Note: Convolution is related: it is the same as cross-correlation,
but with the flipped image of w (" = < ).

Tracking with Correlation Filters 75 slides material by Joao F. Henriques '




%%? Connection to Correlation

= |

The Convolution Theorem

“Cross-correlation is equivalent to an
element-wise product in Fourier domain”

N\ AN\

y=X®W = y=X"XW

where:

® { = F(v) is the Discrete Fourier Transform (DFT) of y.
(likewise for X and W)

® X is element-wise product

® * is complex-conjugate (i.e. negate imaginary part).

* Note that cross-correlation, and the DFT, are cyclic
(the window wraps at the image edges).

Tracking with Correlation Filters 76 slides material by Jodao F. Henriques .



f% Connection to Correlation

The Convolution Theorem

“Cross-correlation is equivalent to an
element-wise product in Fourier domain”

y=X®WwW o y=X"XW

¥ In practice:

w—s 7| 3
\%'%

B ("=~ be orders of magnitude faster:
e T'~r n X n images, cross-correlation is O(n*).

® ['ast Fourier Transform (and its inverse) are O(n*logn).

Tracking with Correlation Filters 77 slides material by Jodao F. Henriques .
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%%? Connection to Correlation

The Convolution Theorem

“Cross-correlation is equivalent to an
element-wise product in Fourier domain”

y=X®W = y=X"XW
Conclusion:

The evaluation of anv linear classifier can be
accelerated with the Convolution Theorem.

“linear” can become non-linear using kernel trick in some
specific cases(will be discussed later)

): How the w for correlation should look like? What about
training?

Tracking with Correlation Filters 78 slides material by Jodao F. Henriques .



Connection to Correlation

B (): How the w for correlation should look like? What about
training?

Objective

High values
Unspecified

®
s
|

Low values

¥ Intuition of requirements of cross-correlation of
cloocifier(filter) w and a training image x
a A high peak near the true location of the target

® Low values elsewhere (to minimize false positive)

* Tracking with Correlation Filters 79 slides material by Joao F. Henriques '



Brief History of Correlation Filters

Minimum Average Correlation Energy (MACE) filters,
1980’s

® Bring average correlation output towards 0: X ®»w

min [lx ® w]|?
w

except for target location, keep the peak value fixed:

subject to: wix=1

B This produces a sharp peak at target location
with closed form solution:
X e X" XX is called the spectrum and is real-valued.

X" XX  division and product (X) are element-wise.

W =

¥ Sharp peak = good localization! Are we done?

Tracking with Correlation Filters 80 slides material by Joao F. Henriques '



= P
/ %@%&j = Brief History of Correlation Filters (=

The MACE filter suffers from 2 main issues:
1. He=d constraints easily lead to overfitting.

o UMACE (“Unconstrained MACE”) addresses this by removing the
hard constraints and require to produce a high average correlation
response on positive samples. However, it still suffer from the 2"d
problem.

2. Fwfarcing a sharp peak is too strong condition; lead to overtfitting
¢ Gaussian-MACE / MSE-MACE - peak to follow a 2D Gaussian

shape
il.O
> 0.0
subjectto: wix =1

® In the original method (1990’s), the minimization was still subject to
the MACE hard constraint.
(It later turned out to be unnecessary!)

AN

min [|x ® w — g||* -
w

Tracking with Correlation Filters 81 slides material by Joao F. Henriques '



Brief History of Correlation Filters

Sharp vs. (Gaussian peaks

1.0
Training image: X = i

0.0

Naive filter
(W =x)

Classifier

(W)

[« Very broad peak is hard to localize
Output (especially with clutter).
(W * X) « State-of-the-art classifiers
(e.g. SVM) show same behavior!
_ Tracking with Correlation Filters 82

slides material by Joao F. Henriques '



Brief History of Correlation Filters

Sharp vs. (Gaussian peaks

i 1.0
Training image: X = i
0.0

Naive filter  Sharp peak
(W = Xx) (UMACE)

Classifier

(W)

« A verv sharp peak is obtained
by emphasizing small image
details (like the fish’s scales
here).

- generalizes poorly; fine scale
details that are usually not
robust

Output
(W *x)

* Tracking with Correlation Filters 83 slides material by Joao F. Henriques '



Brief History of Correlation Filters

Sharp vs. (Gaussian peaks

= 1.0
Training image: X = i
0.0

Naive filter  Sharp peak Gaussian peak
(W = Xx) (UMACE) (GMACE)

_"l""hhl

ri- a

« A good compromise.
- Tiny details are
ignored.
* focuses on larger,
more robust
structures.

Classifier

(W)

Output
(W * X)

* Tracking with Correlation Filters 84 slides material by Joao F. Henriques '



= P
ﬁ*”%%j g Breakthrough by MOSSE tracker (.

Min. Output Sum of Sq. Errors (MOSSE)
B Presented by David Bolme and colleagues at CVPR 2010

B Tracker run at speed over a
600 frames per second

B v~r simple to implement

® no complex features only
=y pixel values

® only FF'T and element-wise operation

]

B performance similar to the most sophisticated tracker (at that time)

Tracking with Correlation Filters 85 slides material by Joao F. Henriques '



ﬁg‘%é Breakthrough by MOSSE tracker

How does it work?

B Use only the “Gaussian peak” objective (no hard constraints)

1.0
m&ﬂllX@W—gllzw g- i
0.0

B Found the following solution using the Convolution Theorem:

g XX
X*XX+ A

(A = 10~* is artificially added to prevent divisions by 0)

W =

¥ No expensive matrix operations! = only FF'T and element-wise op.

Tracking with Correlation Filters 86 slides material by Joao F. Henriques '
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Implementation aspects

W Cosine (or sine) window preprocessing

® image edges smooth to zero
— the filter sees an image as a “cyclic” (important for the FFT)

® gives more importance to the target center.

W Simple update

§ XX Train a MOSSE filter Wyey
X*XX+ A1 using the new image X.

AN\
Wnew

Update previous solution Ws_4

W = (1 = n)Wi_q + NWhew N N . . .
with Wpew by linear interpolation.

Tracking with Correlation Filters 87 slides material by Joao F. Henriques '



e

Breakthrough by MOSSE tracker S’

Implementation aspects

W Scale adaptation Scale Input image Detection output

X 1.1

X 1.0

X 0.9

® Extract patches with different scales and normalize them
+~ the same size

® Run classification; use bounding box with the highest response

Tracking with Correlation Filters 88 slides material by Joao F. Henriques '



«%%5 Why MOSSE works?

Ridge Regression Formulation

= Least-Squares with regularization (avoids overfitting!)

Consider simple Ridge Regression (RR) problem:

min || Xw — y||? + A||w/|?
w
has closed-form solution: w = (XTX + AI)"1XTy
We can replace X = C(X) (circulant data), and y = g (Gaussian targets).

Diagonalizing the involved circulant matrices with the DFT yields:

R X § + Exactly the MOSSE solution!
W= XK+ A = . good learning algorithm (RR)
with lots of data (circulant/shifted
samples).

Tracking with Correlation Filters 92 slides material by Jodao F. Henriques .
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Circulant matrices are a very general tool which allows to replace
standard operations with fast Fourier operations.

The same idea can by applied e.g. to the Kernel Ridge Regression:

with K kernel matrix K;; = k(x;, X;) and dual space representation

a=(K+A)1y
For many kernels, circulant data = circulant K matrix

K = C(K*¥)- where KX is kernel auto-correlaton and
the first row of K (small, and easy to compute)

B Diagonalizing with the DFT for learning the classifier yields:
R § Fast solution in O(nlogn).
a= T + 1 — Typical kernel algorithms are
0(n?) or higher!
Tracking with Correlation Filters 93 slides material by Jodao F. Henriques .
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ﬁ% Kernelized Correlation Filters (=

B The K¢ is kernel correlation of two vectors X and X’

XX/ __ / i—1
k™ =x(x, P'x)
multiple channels can be concatenated to
B For Caussian kernel it yields: the vector x and then sum over in this term

/

/ 1 !/ —_ Ak Y4
0 = exp (— 25 (Il + X2 — 271" © £)))

B Evaluation on subwindows of image z with classifier & and model x:
1. K*=C(k*)
2. f(z)=F (k20O @)

B Update classifier &« and model x by linear interpolation from the location
of maximum response f(z)

B Kernel allows integration of more complex and multi-channel features

Tracking with Correlation Filters 94 slides material by Joao F. Henriques '



ﬁ% Kernelized Correlation Filters S’

P

(@

KCF Tracker

W verv few
hyperparameters

M code fits on one slide
of the presentation!

M Use HoG features
(32 channels)

Training and detection (Matlab)

function alphaf = train(x, y, sigma, lambda)
k = kernel_correlation(x, x, sigma);
alphaf = (y) ./ ( (k) + lambda);
end

function y = detect(alphaf, x, z, sigma)

k = kernel_correlation(z, x, sigma);
y = ( (alphaf .* (k)));
end

function k = kernel_correlation(x1, x2, sigma)

(sun(eon i (FFi2(x1)) .* (Fi2(x2), 3));

C =
d = x1(:)"*x1(:) + x2(:)"*x2(:) - 2 * c;
® 300 FPS k = (-1 / sigman2 * (d) / (d)),'\
end
M Open-Source \
(Bﬂatkﬂ%ﬂpython/Java/CD Sum over channel dimension

Tracking with Correlation Filters

in kernel computation

95 slides material by Joao F. Henriques '



ﬁﬁ% From KCF to Discriminative CF trackers

Basic
W Honwiques et al. — CSK
® raw grayscale pixel values as features

W Howriques et al. — KCF

® HoG multi-channel features

Further work
B Dewolljan et al. — DSST:

a DOA-HoG + grayscale pixels features

o filters for translation and for scale (in the scale-space pyramid)
W [in~a], - SAME:

e H~(@G, color-naming and grayscale pixels features

® quantize scale space and normalize each scale to one size by bilinear
inter. — only one filter on normalized size

Tracking with Correlation Filters 96 slides material by Jodao F. Henriques .
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B De+~~an et al. -SRDCF:

® spatial regularization in the learning process
— limits boundary effect

— penalize filter coeflicients depending on their spatial location

e ~llows to use much larger search region

® more discriminative to background (more training data)
CNN-based Correlation Trackers

¥ Danelljan et al. — Deep SRDCF, CCOT (best performance in VOT 2016)
B Mo ot gl

® features : VGG-Net pretrained on ImageNet dataset extracted from
+hird, fourth and fifth convolution layer

® for each feature learn a linear correlation filter

Tracking with Correlation Filters 97

slides material by Jodao F. Henriques .



Discriminative Correlation Filter with
Channel and Spatial Reliability

https://arxiv.org/abs/1611.08461



https://arxiv.org/abs/1611.08461

CSR-DCF @ |
Discriminative C lation Fil ith C| | | Spatial Reliabili -

» State-of-the-art results, outperforms even trackers based on
deep NN

« Simple features:
—HoG features (18 contrast sensitive orientation channels)
—binarized grayscale channel (1 channel)
—color names (~mapping of RGB to 10 channels)

 Single-CPU single-thread, matlab implementation @13 fps



s

CSR-DCF Ao Lukezc, Mate) Krisian | (©
 Algorithm (repeats 1,2)
* Training:

— Estimate object segmentation — object mask

— Learn correlation filter using the object mask as constraints

— Update generative weights for the feature channels

* Localization:

— Compute response map from the weighted feature channels responses
— Update discriminative weights for the feature channels

— Estimate best position (max peak location + subpixel localization)

— Estimate scale (standard approach used in correlation tracking)

Training Localization




slide credit: Tomas Vojir, —~

CS R' DCF Alan Lukezic, Matej Kristan @

Channel Regularized
* Online weighting scheme of features

* The feature channels are weighted by:

— their absolute contribution to the correct label response during filter
learning, i.e. generative weighting
(the higher contribution to the correct response the better)

— ratio of first and second max peaks of the filter response during
tracking, i.e. discriminative weighting
(the larger difference between first and second peak the better)

Localization:




slide credit: Tomas Voijir,
CS R' DCF Allan L[lkelzic, Matej Kc;Jilsrtan '

Spatial Regularization

GrabCut based segmentation on —
estimated location (or initial position¥
— pisel-wise object mask

Correlation filter is trained using the
object mask, i.e. pixels that does no
belong to the target are disabled

Advantages:

Reduces influence of bounding box object representation for object
that undergoes e.g. rotation. deformation or aspect ratio change

Allows for large search regic
(i.e. large movement), since
the filter training is "
focused by the object mask %“b 5



CSR-DCF

slide credit: Tomas Voijir,

Alan Lukezic, Matej Kristan
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 Results for standard benchmarks: VOT2015 (left) and VOT2016

(right)
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slide credit: Tomas Voijir, .
CS R' DCF Alan Lukelzic, Matej KrJiIsrtan i"@

e Results for standard
benchmark: OTB2015

* Speed analysis




Discriminative Correlation Filters - Summary

« state-of-the-art performance on standard benchmark
* more efficient than competing DNN approaches

« cost function: discriminative, kernel based
e optimization:
—efficient for translation
—response not only at the location of the maximum

* issues with non-square objects
 transformations beyond translation handled ad-hoc

 outputs a global transformation:
—providing only an approximate flow field
—segmentation not part of the standard formulation
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The TLD (PN) Long-Term Tracker

121/150
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The TLD (PN) Long-Term Tracker &,

includes:
 adaptive tracker(s) (FOT)
 object detector(s)

« Pand N event recognizers for unsupervised learning generating (possibly
incorrectly) labelled samples

 an (online) supervised method that updates the detector(s)

Operation:

1. Train Detector on the first patch

2. Runs TRACKER and DETECTOR in parallel

3. Update the object DETECTOR using P-N learning

122/150



TLD a.k.a. PN Tracker a.k.a. “The Predator”

Predator: Camera That Learns

Zdenek Kalal, Jin Matas, Krystian Mikolajczyk
University of Surrey, UK
Czech Technical University, Czech Repubilic

Z. Kalal, K.Mikolajczyk, J. Matas: Tracking-Learning-Detection. IEEE T PAMI 34(7): 1409-1422 (2012)
123/150




P-event: “Loop” W

* exploits temporal structure Tracker responses

Loop Failure

* turns drift of adaptive trackers into a

* Assumption:
If an adaptive tracker fails, it is unlike

* Rule:
Patches from a track starting and enc g

model (black), ie. are validated by th
added to the model




N-event: Uniqueness Enforcement >

* exploits spatial structure

* Assumption:
Object is unique in a single frame.

* Rule:
If the tracker is in model, all other
detections within the current frame
(red) are assumed wrong — prune
from the model

125/150



The Detector W

« Scanning window
« Randomized forest
* Trees implemented as ferns

i Verically oriented edge

[Lepetit 2005] il
* Real-time training/detection I (B

20 fps on 320x240 image

» High accuracy, 8 trees of depth
10

« 2bit Binary Patterns Combined
Haar and LBP features

* Tree depth controls complexity &
discriminability; currently not
adaptive

2bit Binary Pattems

E\AI |[< T | ;}E\O




E] [
L]

Tl

0100000 dnouAnoL

127/150



(LT (RGN

10847812

E] [
(8] =]
L]

128/150



r . '

...;I:rllllt:'.l'.‘l ‘Illrlll' ‘II‘III .lrlrr .Illrllr 1‘." sl . L AL Frredts VTS B s B o ey II""
JUOURND | —



The Flock of Trackers
(with error prediction)

work with T. Vojir

130/150



The Flock of Trackers

« Anxm grid (say 10x10) of
Lucas-Kanade / ZSP trackers

* Tracker initialised on a
regular grid

« Robust estimation of global,
either “median”
direction/scale or RANSAC
(up to homography)

 Each tracker has a
failure predictor

131/150



Two classical Failure Predictors - M
Normalized Cross-correlation Forward-Backward
« Compute normalized cross- « Compute correspondences of local
correlation between local tracker trackers from time t to t+k and t+k
patch in time t to t and measure the k-step error
and t+1 « Sort local trackers according to the
» Sort local trackers according to k-step error
NCC response « Filter out bottom 50% (Median)
 Filter out bottom 50% (Median)
k-step error Backward step t P | e
T = -%ﬁ=% B

[1] Z. Kalal, K. Mikolajczyk, and J. Matas.
Forward-Backward Error: Automatic Detection of Tracking Failures. ICPR, 2010

2016.12.12 Oulu J. Matas:Tracking 132/15



Failure Predictor: Neighbourhood Consistencyi

* For each local tracker i is computed neighbourhood
consistency score as follows :

N, is four neighbourhood of local tracker i, A is displacement and ¢ is displacement error threshold

* Local trackers with

SiNh < Onn
are filtered out

« Setting:
e = 0.5px
®Nh = 1

FoT

local trackers

displacement

neighbourhood

Meotion coherence
g, 2

/K}" —'}'[Ecmsmtentj
N Filtered
dx out

133/150
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Failure Predictors: Temporal consistency =

* Markov Model predictor (MMp) models local trackers as two states
(i.e. inlier, outlier) probabilistic automaton with transition
probabilities pi(s..( | s;)

psipi=1|8=1)

 MMp estimates the probability
of being an inlier for all local *®==10=1
trackers = filter by
1) Static threshold O,
2) Dynamic threshold O,

p (51 =0]s=1)
p(sii1 =0| s =0)
P (siy1 =135 =0)

« Learning is done incrementally
(learns are the transition probabilities between states)

« Can be extended by “forgetting”, which allows faster response to
object appearance change
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The combined outlier filter X

Combining three indicators of failure:
— Local appearance (NCC)

— Neighbourhood consistency (Nh)
(similar to smoothness assumption
used in optic flow estimation)

— Temporal consistency using
a Markov Model predictor (MMp)

« Together form very a stronger
predictor than the popular
forward-backward

* Negligible computational cost (less than 10%)

T. Vojir and J. Matas. Robustifying the flock of trackers. CVWW 11,

135/150
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inliers: 56 / 99
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vojir-error-prediction/mountain_bike.avi-mountain_bike.avi
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vojir-error-prediction/mountain_bike_large.avi-mountain_bike_large.avi
vojir-error-prediction/mountain_bike_large.avi-mountain_bike_large.avi

FoT Error Prediction (ext. viewer) |(®

138/150


vojir-error-prediction/pedestrian3.avi-pedestrian3.avi
vojir-error-prediction/pedestrian3.avi-pedestrian3.avi

=
=
1 1

-150 100 -50 0 50 100 150 200

More TLD videos 139/150
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Evaluation of Trackers



Tracking: Which methods work?

142/150



Tracking: Which methods work?

Method of Ross = Mean SHItt

143/150



What works? “The zero-order tracker” ©

144/150



Compressive Tracker (ECcv’12). Different runs. |(&

n
=

-
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- VOT community evolution

mVOTZOlB VOT2014 VOT2015 VOT2016
submission deadline  submission deadline submission dea ubmission deadline

1,500 ,.\_./...,9.,1 _\.4.,9_ I v"*‘/—r-'
— ICCV2013 _._.__/"'“‘-/L 5 ECCV2016

U

ECCV2014

July 2013 Januarv 2014 July 20114 January 2015 July 2015 January 2018 July 2016

Ehi: Wil Olepot Tiniikiking

VTN 8 challrmge resslia [T P T ——

+ +
.| VOT-TIR || L | VOT-TIR
paper paper
(69 coauth) (70 coauth)

51 Coauthors, 14pgs 57 Coauthors, 27pgs =

128 Coauthors, 24pgs 141 Coauthors, 44pgs

Matej Kristan, matej.kristan@fri.uni-lj.si, DPAEV Workshop, ECCV 2016 146/39



~ VOT challenge evolution

VOT2013 ranks, A, R 16, s. manual |:| manual per frame
VOT2014 ranks, A, R, EFO 25, s. manual O manual per frame
VOT2015 EAO, A, R, EFO 60, fully auto O manual per frame
VOT2016 EAO, A, R, EFO 60, fully auto ,fi; auto per frame

e Gradua
e Gradua

e Gradua

®

increase of dataset size VOT VOT

il chject racking chelengs vl Ciect Inacking challeoge

27
38
62 VOT, 24 VOT-TIR
70 VOT, 24 VOT-TIR

refinement of dataset construction

refinement of performance measures

e Gradual increase of tested trackers

Matej Kristan, matej.kristan@fri.uni-lj.si, DPAEV Workshop, ECCV 2016
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Class of trackers tested

 Single-object, single-camera

* Short-term:
—Trackers performing without re-detection

« Causality:
—Tracker is not allowed to use any future frames

* No prior knowledge about the target
—Only a single training example - BBox in the first frame

* Object state encoded by a bounding box

148/150



Construction (1/3): Sequence candidates

Matej Kristan, matej.kristan@fri.uni-lj.si, DPAEV Workshop, ECCV 2016 149/39



Construction (2/3): Clustering

* Approximately annotate targets
* 11 global attributes estimated
automatically for 356 sequences

(e.g., blur, camera motion, object motion)

sequences

Affinity Propagation
[Frey, Dueck 2007]

e Cluster into K =28 groups (automatic selection of K)

Matej Kristan, matej.kristan@fri.uni-lj.si, DPAEV Workshop, ECCV 2016 150/39



Construction (3/3): Sampling

Cluster similar Sample diverse

° ReqUIrement: sequences challenging set

e Diverse visual attributes O Q
e Challenging subset —

* Global visual attributes: computed

O O0O0O0O0O0

* Tracking difficulty attribute: Applied FoT, ASMS, KCF trackers

* Developed a sampling strategy that sampled
challenging sequences while keeping the global
attributes diverse.

Matej Kristan, matej.kristan@fri.uni-lj.si, DPAEV Workshop, ECCV 2016 151/39



VOT2015/16 dataset: 60 sequences

T i

g i o]
gk .% R
BT A o il

Matej Kristan, matej.kristan@fri.uni-lj.si, DPAEV Workshop, ECCV 2016 152/39



Object annotation

 Automatic bounding box placement
1. Segment the target (semi-automatic)

2. Automatically fit a bounding box by optimizing a cost function

A TY 'Y

Bl 3 i R

il : 84
/1o e Bl Y 2
3 Jﬂl' ‘u"g |

Matej Kristan, matej.kristan@fri.uni-lj.si, DPAEV Workshop, ECCV 2016 153/39



Sequence ranking

 Among the most challenging sequences
Matrix (Af = 0.33, M¢ = 57) Rabbit(Af = 0.31, My = 43) Butterfly (Af = 0.22, My = 45)

: f

 Among the easiest sequences

Singerl (Af = 0.02, My = 4) Octopus (Af = 0.01, My = 5) Sheep (4 = 0.02, My = 15)

Kristan et al., VOT2016 results 154/42



e Challenges Support Publications

Participate Program People ECCV2016, Amsterdam, the Netherlands

Dataset

VOT2016

VOT2016 Challenge

News and updates

July 14th, 2016: - Workshop day

The VOT workshop will be held on October 10th. A

i

You find the old news here.

Call for participation and for papers

We are happy to announce the 4th VOT Workshop, that will take place in conjunction with ECCV 2016. The event follows the three
highly sucessful workshops VOT2013 (ICCV2013), VOT2014 (ECCV2014), and VOT2015 (ICCV2015). E

Researchers from industry as well as academia are invited to participate. The challenge aims at single-object short-term trackers
that do not apply pre-learned models of object appearance (model-free). Trackers do not necessarily need to be capable of

automatic re-initialization, as the objects are visible over the whole course of the sequences. P =
We are also announcing the second VOT thermal imagery tracking sub-challenge VOT-TIR2016. The details of the VOT2(16 and

VOT-TIR2016 sub-challenge will be available soon.

The results of the VOT2016 and VOT-TIR2016 challenges will be presented at the ECCV2016 VOT workshop. 5 =

visual object tracking challenge

The VOT committee also solicits full-length papers describing:

Main novelty — better ground truth.
« Each frame manually per-pixel segmented
« B-boxes automatically generated from the segmentation



VOT Results: Realtime

2013 2014 2015
PLT (~169 fps) FoT (~190 fps) ASMS (~172 fps)
FoT (~156 fps) PLT (~112 fps) BDF (~300 fps)
CCMS(~57 fps) KCF (~36 fps) FoT (~190 pfs)
Experimant 1 FO]— e FoT q{]
i PLT 1 ror ) PLT / x\
[ + o Con
- 2 CCM3 P l?r;\vg iy V. X \o 5N ASMS
: J x BDF
=t # S Per-attribute normalized |
3 AR scores |
< Robustness (S = 100.00)

* Flow-based, Mean Shift-based, Correlation filters

* Engineering, use of basic features

Matej Kristan, matej.kristan@fri.uni-lj.si, DPAEV Workshop, ECCV 2016 156/39



VOT 2016: Results

. C-COTOinghtIy ahead of TCNN
e Most accurate: SSAT

e Most robust: C—COTOand MLDF IP' | f(

8
|IIIllIlIIIII |

Overlap curves AR-raw plot

SSA\A TCNN |

COT
M <,<—MLD:

n

Rl

O

>

o

o

< Pooled AR values |
Robustness (S = 100.00)

Matej Kristan, matej.kristan@fri.uni-lj.si, DPAEV Workshop, ECCV 2016 157/42



VOT 2016: Tracking speed

 Top-performers slowest
* Plausible cause: CNNO 3¢

e Real-time bound: Staple+

* Decent accuracy,

* Decent robusthess

EAO vs. speed o7 r
g—&:og TCNN
' ~MLDF
o Stapl
2 |
*a B + 0.4
LA
< Po 02 }
* 7
P>

Mormalized speed (EFO)

Note: the speed in some
Matlab trackers has been
significantly underestimated
by the toolkit since it was
measuring also the Matlab
restart time. The EFOs of
Matlab trackers are in fact
higher than stated in this

06 F

0.5 F

03 f

01 §

SSAT  TCNN i
C-COoT

ok (?S‘aﬂLD]Z

0O <
P> é& &Staple+

Pooled AR values |

Robustness (S = 100.00)

0.2 0.4 0.6 0.8 1

Matej Kristan, matej.kristan@fri.uni-lj.si, DPAEV Workshop, ECCV 2016
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VOT public resources

Resources publicly available: VOT page

VOT

Submit to the ECCV VOT 2016 Workshop!

Home Challenges Support Publications

The VOT challenges provide the visual tracking community with a precisely defined and repeatable way of comparing short-term trackers as well as a common plz
the evaluation and advancements made in the field of visual trackina.

Documentation
Raw results of all tested trackers e
Resources
Relevant methodology papers :mwm;ﬁw“wm

2016: Submitted trackers code/binaries Tutorials and guides

Ths LADESS EEHT. O P B0 S

All fully annotated datasets (2013-2016) pr——

Documentation, tutorials, forum o R

Matej Kristan, matej.kristan@fri.uni-lj.si, DPAEV Workshop, ECCV 2016 159/39
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Summary

« “Visual Tracking” may refer to quite different problems.

The area is just starting to be affected by CNNs.

Robustness at all levels is the road to reliable performance

Key components of trackers:

— target learning (modelling, “template update”)

— integration of detection and temporal smoothness assumptions
— representation of the image and target

Be careful when evaluating tracking results
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THANK YOU.
Questions, please?



